Dear reader,
Rather than our usual short-form blog post, I have published a longer LinkedIn Pulse article containing my 5 top tips for being better at Agile. I hope you find it useful and/or interesting. Please do give me feedback!
Thanks,
Guy
Dear reader,
Rather than our usual short-form blog post, I have published a longer LinkedIn Pulse article containing my 5 top tips for being better at Agile. I hope you find it useful and/or interesting. Please do give me feedback!
Thanks,
Guy
This week, we’re shaking things up. Instead of the usual weekly blog, we have prepared a special something, which we will release tomorrow.
Stay tuned for more details!
This post is inspired by a question from one of our readers, Lukasz. I’m going to outline how I find and examine research on organisations, agile/lean, and culture. Hopefully this will inspire you to dig more into what stuff is true and what is just crap.
Finding the genuine facts among the huge volume of opinion is hard. It’s hard in politics, it’s hard in management, and it’s hard in social science. As a mathematician, I come from a world things are either true or not, and I continue to find exploring ambiguous and opinion-rife research challenging.
First you need to know what you want to know. Inspiration for what to research can be found in case studies, papers, blogs, books, conversations, your own experience etc. I personally find my ways of thinking most easily challenged by experience, books, videos, and conferences (probably because these are accessible!).
Once you’ve something you want to know, and the vocabulary to describe it, I’d recommend googling with specific terms. For example, if you are interested in the impact of management on team members, I’d recommend something like: “role hierarchy team impact” or something similar. Stay away from buzzwords like “management” or “agile”.
Google scholar is good for finding paper titles, but often due to publishers you will have to pay for them. Knowing the title, if you search again specifically for those papers/authors you can often find a free version on the author’s academic page, or at least some related content.
Just because something is popular to talk about (or highly cited) doesn’t make it good. A good example is Myers Briggs Type Indicators. Yes it is popular, and arguably helpful to some, but that doesn’t make it true or “the way to classify people”. Similarly some leadership styles are more heavily researched than others. The weight of research can be tempting to give in to, but keep sifting through, especially when the research is about models to help understand a topic (rather than an absolute truth).
Once you’ve something you think looks solid, a good test is to try it yourself! Run an experiment relevant to your situation, and see if you get results in line with the theory. Then tell other people what you’ve learned. (Yes I’m ignoring confirmation bias etc.)
If you have other techniques, or questions or suggested improvements to my ways of researching, please do share them in the comments!
Bear with this post as it goes through some equations at the beginning, but it is worth it. We’ll be doing some of the calculations to get this picture:
This is the set of numbers “c” such that is bounded. These z are complex numbers, which we’ll ignore for now. It is much easier to understand if we look at some examples:
Let’s say c = -1.
We start with
This is repeating, and the numbers are bounded.
Let’s now try c = 0.5.
We start with
We can see that these numbers are getting bigger and bigger, and it is not bounded.
One more: c=-1.9
It bounces around a lot, never getting very big or very small, so it is bounded. It is kinda fun to sit with a calculator and try this.
Mathematicians call this kind of system “chaos”, as it is very sensitive to the starting conditions. Sometimes this is called the butterfly effect. Note that chaotic is not the same as random: in chaotic systems if you know everything about the initial conditions you know what will happen, whereas in random systems even if you knew everything about the initial conditions you wouldn’t know what was going to happen.
Benoit Mandelbrot was one of the first mathematicians to have access to a computer. Hopefully you can also see now why Benoit Mandelbrot needed a computer to work these out. He repeated this for lots of values of c. The pretty picture we started with is really a plot of the set of c (called the Mandelbrot set), where the colours indicate what happens to the sequence (eg how quickly it converges, if it does).
You can zoom into the colourised picture to see how complex this is here. Lots of people (me included) think it is pretty cool. It is really worth taking a look to appreciate the complexity.
Stepping back: This picture is made from the formula . This is so simple, and yet gives rise to infinite complexity. In the words of Jonathan Coulton,
Infinite complexity can be defined by simple rules
Benoit Mandelbrot went on to apply this to the behaviour of economic markets, among other things. Later people have applied this to fluid dynamics (video), medicine, engineering, and many other areas. Apparently there is even a Society for Chaos Theory in Psychology & Life Sciences..!
This article is good for more explanation of the maths.
Apologies to any Pure mathematicians for the simplifications in this article.